PRELIMINARY NOTES 215

вва 61164

Purification of β -xylosidase and its action on O- β -xylosyl L-serine and stem bromelain glycopeptide

For the structural analysis of glycoproteins, purified enzymes which specifically hydrolyze the sugar portion of glycoproteins are required. Several such enzymes have been discovered and purified, however no attempt to purify β -xylosidase (β -D-xyloside xylohydrolase, EC 3 2 1 37) has been carried out. Recently, xylose was found in several glycoproteins as an integral constituent. Purification of β -xylosidase is of special interest, because O- β -xylopyranosyl L-serine is a type of linkage between carbohydrate and protein found in certain acid mucopolysaccharide—protein complexes^{1,2}

This paper describes the purification of β -xylosidase from the liver of a marine gastropod, *Charonia lampas*, and its action on O- β -xylosyl L-serine and stem bromelain glycopeptide

As already reported, crude enzyme solution³ from liver released xylose from stem bromelain glycopeptide⁴ in addition to fucose and mannose.

The assay of β -xylosidase was carried out as follows. The incubation mixture was composed of o.1 ml of enzyme solution and o 2 ml of o 2 M acetate buffer (pH 4.0), containing 0 2 mg of p-nitrophenyl β -D-xylopyranoside and 0 1 mmole of NaCl After incubation for 15 min at 37°, 2 ml of 1 M Na₂CO₃ solution were added and liberated p-nitrophenol was measured with the absorbance being at 420 mm. Protein content of the enzyme preparation was measured by the method of Lowry et al 5 with boyine serum albumin as a standard. The entire procedure of purification was carried out between 0° and 5° . 250 g of the liver of C lampas were homogenized with 1000 ml of I M NaCl solution for 5 min. After centrifugation, the supernatant was brought to 37% saturation with $(NH_4)_2SO_4$ and centrifuged. The precipitate was dissolved in 50 ml of distilled water, dialyzed against distilled water overnight, adjusted to pH 4 by the addition of I M acetic acid and centrifuged. About 500 ml of the supernatant solution were dialyzed against o of M acetate buffer (pH 4 0) overnight, heated at 55° for 3 min and centrifuged The supernatant was applied to a column of CM-cellulose (5 cm imes 60 cm) buffered with 0 or M acetate buffer (pH 4 0) and washed with the same buffer containing o.I M NaCl solution It was then eluted with the same buffer containing o 4 M NaCl The major active fractions of the eluate (about 340 ml) were pooled, concentrated to 13.5 ml by dialysis against polyethyleneglycol, applied to a column of Sephadex G-200 (3 cm imes 100 cm) equilibrated with 0 1 M NaCl and eluted with the same solution The major active fractions of the eluate (90 ml) were pooled and applied to a column of hydroxylapatite (2 cm × 2 cm). After the column was washed with 2% Na₂SO₄ solution, β-xylosidase was eluted with 4% Na₂SO₄ solution. The most active fractions of the eluate (15 ml) were pooled and stored at -20° as purified β -xylosidase

With this procedure 88-fold purification was attained with a recovery of 5% The purified β -xylosidase hydrolyzed 183 μ moles of p-nitrophenyl β -D-xyloside per min per mg of protein.

This purified β -xylosidase preparation was practically free from protease activity and from all other glycosidase activities tested (α -glucosidase, α - or β -galactosidase, α - or β -mannosidase, α -L-fucosidase, α - or β -N-acetylglucosaminidase and β -N-acetylglucosaminidase

216 PRELIMINARY NOTES

galactosamınıdase), except a weak β -glucosidase activity, which may be regarded as the secondary action of the β -xylosidase (M Fukuda and F Egami, unpublished data)

The purified β -xylosidase hydrolyzed O- β -xylosyl L-serine The reaction mixture consisted of 148 μg of enzyme, 100 μg of O-β-xylosyl L-serine⁶, 10 μl of 1 M acetate buffer (pH 4 0) and 100 μ moles of NaCl. Its total volume was 110 μ l and a few drops of toluene were added During incubation for 18 h at 37°, 19 8 µg of xylose were released as measured by the method of Park and Johnson? Thin-layer chromatography of the reaction products was carried out on plates coated with silica gel using the solvent system n-propanol-ethyl acetate-water (7 3.1, v/v/v). Only one spot, corresponding to xylose, could be detected by anisaldehyde-H₂SO₄ reagent⁸ In control experiments, no trace amounts of xylose or of other sugars could be detected. This enzyme also hydrolyzed stem bromelain glycopeptide. The reaction mixture consisted of 0.478 μmole of stem bromelain glycopeptide, 100 μlofo 1 M citrate-phosphate buffer (pH 4 0), 6 mg of NaCl and 550 μ g of enzyme. Its final volume was 300 μ l and 3 μ l of toluene were added After incubation for 65 h at 37°, the reaction mixture was desalted and subjected to paper chromatography using ethylacetate-acetate-water (3.1 3, v/v/v) On the chromatogram only xylose was detected by alkaline silver nitrate reagent¹⁰ In the control experiment, no trace amounts of xylose or other sugars could be detected o 42 μ mole of xylose was released as measured by quantitative paper chromatography These results clearly indicate that stem bromelain glycopeptide has a xylose at the non-reducing terminus Further details will be reported elsewhere

The authors are greatly indebted to Dr. F. Tominaga for the gift of $O-\beta$ -xylosyl L-serine. They also wish to thank the Seikagaku Kogyo Co. for the supply of C lampas

Department of Brophysics and Brochemistry, Faculty of Science, The University of Tokyo, Tokyo (Japan) Minoru Fukuda Takashi Muramatsu Fujio Egami

Department of Biochemistry, Nagoya City University, School of Medicine, Nagoya (Japan) Noriko Takahashi Yoko Yasuda

```
I U LINDAHL AND L RODÉN, J Biol Chem, 240 (1905) 2821
2 U LINDAHL AND L RODÉN, J Biol Chem, 241 (1966) 2113
3 T MURAMATSU AND F EGAMI, Japan J Exptl Med, 35 (1965) 171
4 N TAKAHASHI, Y YASUDA AND T MURACHI, Abstr 20th Proc Japan Chem Soc, Tokyo, 1967, Part III, p 679
5 O H LOWRY, N J. ROSEBROUGH, A L FARR AND R J RANDALL, J Biol Chem, 193 (1951) 265
6 F TOMINAGA, K OKA AND H YOSHIDA, J Biochem Tokyo, 57 (1965) 717
7 J T PARK AND M J JOHNSON, J Biol Chem, 181 (1949) 149
8 E STAHL AND U KALTENBACH, J Chromatog, 5 (1961) 351
9 T MURACHI, A SUZUKI AND N TAKAHASHI, Biochemistry, 6 (1967) 3730
10 W E TREVELYAN, D P PROCTOR AND J S HARRISON, Nature, 166 (1950) 444
```

Received February 22nd, 1968

Biochim Biophys Acta, 159 (1968) 215-216